Cevap:
Açıklama:
# 3 + i = sqrt (10) (cos (alfa) + günah (alfa)) # nerede#alpha = arctan (1/3) #
Yani
#root (3) (3 + i) = kök (3) (sqrt (10)) (cos (alfa / 3) + ı günah (alfa / 3)) #
# = root (6) (10) (cos (1/3 arctan (1/3)) + günah (1/3 arctan (1/3))) #
# = kök (6) (10) cos (1/3 arctan (1/3)) + kök (6) (10) günah (1/3 arctan (1/3)) i #
Dan beri
Diğer iki küp kök
# omega (kök (6) (10) cos (1/3 arktan (1/3)) + kök (6) (10) günah (1/3 arktan (1/3)) i) #
# = kök (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + kök (6) (10) günah (1/3 arctan (1/3) + (2pi) / 3) #
# omega ^ 2 (kök (6) (10) cos (1/3 arktan (1/3)) + kök (6) (10) günah (1/3 arktan (1/3)) i) #
# = kök (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + kök (6) (10) günah (1/3 arctan (1/3) + (4pi) / 3) #