Cevap:
Açıklama:
Sanırım sorgulayıcı soruyor
DeMoivre kullanarak.
Kontrol:
Bunun için DeMoivre'e gerçekten ihtiyacımız yok:
öyleyse kaldık
İkinci dereceden bir denklemin ayırt edici özelliği -5'tir. Hangi cevap denklemin çözüm sayısını ve türünü tanımlar: 1 karmaşık çözüm 2 gerçek çözümler 2 karmaşık çözümler 1 gerçek çözüm?
Kuadratik denkleminizin 2 karmaşık çözümü var. İkinci dereceden bir denklemin ayırımcıları bize yalnızca şu formun bir denklemi hakkında bilgi verebilir: y = ax ^ 2 + bx + c veya bir parabol. Bu polinomun en yüksek derecesi 2 olduğundan, 2'den fazla çözümü olmamalıdır. Ayırt edici, basitçe karekök simgesinin (+ -sqrt ("")) altındaki öğelerdir, karekök simgesinin kendisi değildir. + -sqrt (b ^ 2-4ac) Eğer ayrımcı, b ^ 2-4ac, sıfırdan düşükse (yani, herhangi bir negatif sayı), o zaman bir kare kök sembolünün altında negati
Karmaşık sayı 5 - 3i göz önüne alındığında karmaşık sayıyı karmaşık düzlemde nasıl grafiklendirirsiniz?
İki dik eksen çizin, tıpkı y, x grafiğindeki gibi, ancak yandx yerine iandr kullanın. (R, i) 'nin bir arsa böylelikle r gerçek sayıdır ve i hayali sayıdır. Böylece, r, i grafiğinde (5, -3) üzerine bir nokta çizin.
Binom Teoremini (x + 7) ^ 4 genişletmek ve sonucu basitleştirilmiş biçimde ifade etmek için kullanın.
2401 + 1372x + 294x ^ 2 + 28x ^ 3 + x ^ 4 Binom teoremini kullanarak genişletilmiş bir x terim kümesi olarak ifade edebiliriz (a + bx) ^ c: (a + bx) ^ c = sum_ (n = 0) ^ c (c!) / (n! (cn)!) a ^ (cn) (bx) ^ n Burada, (7 + x) ^ 4 değerine sahibiz. Böylece genişletmek için: (4!) / (0 ! (4-0)!) 7 ^ (4-0) x ^ 0 + (4!) / (1! (4-1)!) 7 ^ (4-1) x ^ 1 + (4!) / (2! (4-2)!) 7 ^ (4-2) x ^ 2 + (4!) / (3! (4-3)!) 7 ^ (4-3) x ^ 3 + (4! ) / (4! (4-4)!) 7 ^ (4-4) x ^ 4 (4!) / (0! (4-0)!) 7 ^ 4x ^ 0 + (4!) / (1) ! (4-1)!) 7 ^ 3x ^ 1 + (4!) / (2! (4-2)!) 7 ^ 2x ^ 2 + (4!) / (3! (4-3)!) 7x ^ 3 + (4!) / (4! (4-4)!) 7 ^ 0x ^ 4 (4