Cevap:
Açıklama:
Bhaskara'nın formülünü kullanabilmek için ifade sıfıra eşit olmalıdır. Bu nedenle, denklemi şu şekilde değiştirin:
X 'için çözme:
X '' için çözme:
Bir ikizkenar üçgenin taban açıları uyumludur. Temel açıların her birinin ölçüsü üçüncü açının ölçüsünün iki katıysa, üç açının ölçüsünü nasıl bulursunuz?
Temel açılar = (2pi) / 5, Üçüncü açı = pi / 5 Her temel açı = teta olsun Bu nedenle üçüncü açı = teta / 2 Üç açının toplamı pi 2theta + teta / 2 = pi 5theta = 2pi teta'ya eşit olmalıdır = (2pi) / 5: Üçüncü açı = (2pi) / 5/2 = pi / 5 Hence: Temel açılar = (2pi) / 5, Üçüncü açı = pi / 5
İkinci dereceden bir denklemin ayırt edici özelliği -5'tir. Hangi cevap denklemin çözüm sayısını ve türünü tanımlar: 1 karmaşık çözüm 2 gerçek çözümler 2 karmaşık çözümler 1 gerçek çözüm?
Kuadratik denkleminizin 2 karmaşık çözümü var. İkinci dereceden bir denklemin ayırımcıları bize yalnızca şu formun bir denklemi hakkında bilgi verebilir: y = ax ^ 2 + bx + c veya bir parabol. Bu polinomun en yüksek derecesi 2 olduğundan, 2'den fazla çözümü olmamalıdır. Ayırt edici, basitçe karekök simgesinin (+ -sqrt ("")) altındaki öğelerdir, karekök simgesinin kendisi değildir. + -sqrt (b ^ 2-4ac) Eğer ayrımcı, b ^ 2-4ac, sıfırdan düşükse (yani, herhangi bir negatif sayı), o zaman bir kare kök sembolünün altında negati
İki açı doğrusal bir çift oluşturur. Küçük açının ölçüsü, daha büyük açının ölçüsünün yarısıdır. Daha büyük açının derece ölçüsü nedir?
120 ^ @ Doğrusal bir çiftteki açılar toplam 180 derece ölçüsüne sahip düz bir çizgi oluşturur. Çiftteki daha küçük açı daha büyük açının ölçüsünün yarısıysa, onları şu şekilde ilişkilendirebiliriz: Daha küçük açı = x ^ @ Büyük açı = 2x ^ @ Açıların toplamı 180 ^ @ olduğundan, şunu söyleyebiliriz: bu x + 2x = 180'dir. Bu 3x = 180 olmasını basitleştirir, yani x = 60 olur. Böylece, daha büyük açı (2xx60) ^ @ veya 120 ^ @ 'dir.