Cevap:
İki tam sayı
Açıklama:
İlk tamsayının olmasına izin vereceğiz.
Şimdi yazabilir ve çözebiliriz.
Yani ilk tam sayı
İki ardışık garip tamsayının ürünü, toplamlarının dört katından 1'den azdır. İki tamsayı nedir?
Bunu denedim: İki ardışık tuhaf tamsayıyı arayın: 2n + 1 ve 2n + 3 bizde: (2n + 1) (2n + 3) = 4 [(2n + 1) + (2n + 3)] - 1 4n ^ 2 + 6n + 2n + 3 = 4 (4n + 4) -1 4n ^ 2-8n-12 = 0 N: n_ (1,2) = (8 + -sqrt (64+ 192)) / 8 = (8 + -16) / 8 n_1 = 3 n_2 = -1 Böylece sayımız: 2n_1 + 1 = 7 ve 2n_1 + 3 = 9 veya: 2n_2 + 1 = -1 ve 2n_2 + 3 = 1
İki ardışık negatif garip tamsayının karelerinin toplamı 514'e eşittir. İki tamsayının değerini nasıl buluyorsunuz?
-15 ve -17 İki garip negatif sayı: n ve n + 2. Karelerin toplamı = 514: n ^ 2 + (n + 2) ^ 2 = 514 n ^ 2 + n ^ 2 + 4n + 4 = 514 2n ^ 2 + 4n -510 = 0 n = (- 4 + -sqrt (4 ^ 2-4 * 2 * (- 510))) / (2 * 2) n = (- 4 + - kısa (16 + 4080)) / 4 n = (- 4 + - kısa (4096)) / 4 n = (- 4 + -64) / 4 n = -68 / 4 = -17 (çünkü negatif bir sayı istiyoruz) n + 2 = -15
İki ardışık garip tamsayının toplamı 48'tir, iki garip tam sayı nedir?
23 ve 25 birlikte 48'e eklenir. İki ardışık garip tamsayının x ve x + 2 değeri olduğunu düşünebilirsiniz. x, ikisinin küçüğüdür ve x + 2, ondan 2 daha fazladır (1 olacağından daha fazla). Artık bunu bir cebir denkleminde kullanabiliriz: (x) + (x + 2) = 48 Sol tarafı birleştir: 2x + 2 = 48 Her iki taraftan da 2'yi çıkar: 2x = 46 Her iki tarafı da 2: x = 23 ile böl küçük sayının x ve x = 23 olduğunu bilerek, 23'ü x + 2'ye bağlayabiliriz ve 25 alabiliriz. Bunu çözmenin başka bir yolu da biraz sezgi gerektirir. Eğer 48'i 2'ye b