Cevap:
şöyle söylerdim
Açıklama:
Tüm olası kombinasyonları gösteren aşağıdaki şemaya dikkat edin:
Gördüğünüz gibi, pembe sayıları toplam olarak almak için iki seçenek var.
veya
Bir ailenin üç çocuğu olduğunu varsayalım, ilk iki çocuğun erkek olma olasılığı vardır. Son iki çocuğun kız olma olasılığı nedir?
1/4 ve 1/4 Bunu çözmenin 2 yolu var. Yöntem 1. Bir ailenin 3 çocuğu varsa, toplam farklı erkek-kız kombinasyonu sayısı 2 x 2 x 2 = 8'dir. Bunlardan iki tanesi (oğlan, oğlan ...) 3. çocuk oğlan olabilir veya Bir kız, ama hangisi olduğu önemli değil. Öyleyse, P (B, B) = 2/8 = 1/4 Yöntem 2. İki çocuğun erkek olma olasılığını şu şekilde değerlendirebiliriz: P (B, B) = P (B) xx P (B) = 1/2 xx 1/2 = 1/4 Aynı şekilde, her iki kız da son iki çocuk olabilir: (B, G, G) veya (G, G, G) 8 olasılıktan 2'si. Yani, 1/4 VEYA: P (?, G, G) = 1 xx 1/2 xx 1/2 = 1/4 (Not: Bir erkek veya
İki sayının büyüklüğü, 10 küçük sayının iki katından daha azdır. İki sayının toplamı 38 ise, iki sayı nedir?
En küçük sayı 16 ve en büyük 22'dir. İki sayının en büyüğü x olsun, sorun şu denklemle özetlenebilir: (2x-10) + x = 38 sağcı 3x-10 = 38 sağcı 3x = 48 sağcı x = 48/3 = 16 Bu nedenle en küçük sayı = 16 en büyük sayı = 38-16 = 22
İki zar atarsın. Zarların toplamının tuhaf olma olasılığı ve her iki zarın da 5 sayısını gösterme olasılığı nedir?
P_ (tek) = 18/36 = 0.5 P_ (2 * beşli) = 1/36 = 0.02bar7 Aşağıdaki kötü çizilmiş tabloya bakıldığında üstte 1 ile 6 arasındaki sayıları görebilirsiniz. İlk kalıbı temsil ederler. sütun, ikinci kalıbı temsil eder. İçinizde 2 ile 12 arasındaki rakamları görürsünüz. Her pozisyon iki zarın toplamını temsil eder. Atış sonucu için 36 toplam olasılık olduğuna dikkat edin. Tek sonuçları sayarsak, 18 elde ederiz, bu yüzden tek sayının olasılığı 18/36 ya da 0.5'tir. Şimdi beşi gösteren her iki zar da sadece bir kez olur, bu nedenle olasılık 1/36 veya 0.027