Cevap:
Birim vektör
Açıklama:
2 vektöre dik olan vektör determinant ile hesaplanır (çapraz ürün)
nerede
Burada, biz var
Bu nedenle,
2 nokta ürün yaparak doğrulama
Yani,
Birim vektör
(2i - 3 j + k) ve (2i + j - 3k) içeren düzlemde normal olan birim vektör nedir?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> İki vektör içeren bir düzleme normal (dik, dik) olan bir vektör de normaldir verilen vektörlerin her ikisi de. Verilen iki vektörün çarpımını alarak normal vektörü bulabiliriz. Daha sonra o vektör ile aynı yönde bir birim vektör bulabiliriz. İlk olarak, her vektörü vektör biçimine yazın: veca = <2, -3,1> vecb = <2,1, -3> Çapraz ürün, vecaxxvecb şurada bulunur: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) i bileşeni için şunları yapt
3i + 7j-2k ve 8i + 2j + 9k içeren düzlemde normal olan birim vektör nedir?
Uçağa normal birim vektör (1 / 94.01) (67hati-43hatj + 50hatk). VecA = 3hati + 7hatj-2hatk, vecB = 8hati + 2hatj + 9hatk'ı düşünelim. VecA düzlemine normal olan vecB, vecA, vecB çapraz ürününden başka bir şey değildir. => vecAxxvecB = hati (63 + 4) -hatj (27 + 16) + şapka (6-56) = 67hati-43hatj + 50hatk. Düzlemde normal birim vektör + - [vecAxxvecB // (| vecAxxvecB |)] So | vecAxxvecB | = sqrt [(67) ^ 2 + (- 43) ^ 2 + (50) ^ 2] = sqrt8838 = 94.01 ~~ 94 Şimdi, yukarıdaki denklemin tümü yerine, birim vektör = + - {[1 / (sqrt8838)]] [67hati-43hatj +
(- 3 i + j -k) ve # (- 2i - j - k) içeren düzlemde normal olan birim vektör nedir?
Birim vektör = <- 2 / sqrt30, -1 / sqrt30,5 / sqrt30> Bir çapraz ürün yaparak diğer 2 vektöre dik olan vektörü hesaplar, Let veca = <- 3,1, -1> vecb = <- 2, -1, -1> vecc = | (hati, hatj, hatk), (- 3,1, -1), (- 2, -1, -1) | = Hati | (1, -1), (- 1, -1) | -hatj | (-3, -1), (- 2, -1) | + hatk | (-3,1), (- 2 , -1) | = hati (-2) -hatj (1) + şapka (5) = <- 2, -1,5> Doğrulama veca.vecc = <- 3,1, -1>. <- 2, -1,5> = 6-1-5 = 0 vecb.vecc = <- 2, -1, -1>. <- 2, -1,5> = 4 + 1-5 = 0 vecc modülü = || vecc || = || <-2, -1,5> || = sqrt (4 + 1