Cevap:
Frekans
Açıklama:
İçindeki bir işlev
İşlevin periyodunu (veya dönemin tersi olmayan bir frekansı) bulmak için önce işlevin periyodik olup olmadığını bulmamız gerekir. Bunun için, iki ilişkili frekansın oranı rasyonel bir sayı olmalıdır ve olduğu gibi
Dönemi
Dolayısıyla, işlev süresi
Dönemin tersi olan frekans
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
İspat: - günah (7 teta) + günah (5 teta) / günah (7 teta) -sin (5 teta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Nasıl (basitçe karyola (teta)) / (csc (teta) - günah (teta))?
= (costheta / sintheta) / (1 / sintheta - sin teta) = (costheta / sintheta) / (1 / sintheta - sin ^ 2theta / sintheta) = (costheta / sintheta) / ((1 - sin ^ 2theta) / sintheta = (costheta / sintheta) / (cos ^ 2theta / sintheta) = costheta / sintheta xx sintheta / cos ^ 2theta = 1 / costheta = sectheta Umarım bu yardımcı olur!