Cevap:
Yani saat 5:17.
Açıklama:
Bunu not et:
23:32, gece yarısından 28 dakika önce.
Ekleme
Yani yeni zamanı bulmak için tek yapmamız gereken, öğleden sonra 28 dakika çıkarmak
Dakikaları çıkarmak:
Yani saat 5:17.
12 saatlik bir saatte çalışmak:
Saat ve dakikayı saat 11: 30'a ekleyebiliriz.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 saat çalışan bir saat:
Saat ve dakika sayısını 23.32'ye ekleyebiliriz.
İlk popülasyon 250 bakteridir ve 9 saat sonra popülasyon, 1 saat sonra popülasyonu iki katına çıkarır. 5 saat sonra kaç bakteri olacak?
Tek tip üssel büyüme varsayarsak, nüfus her 8 saatte bir ikiye katlanır. Popülasyon formülünü p (t) = 250 * 2 ^ (t / 8) şeklinde yazabiliriz, burada t saat olarak ölçülür. Başlangıç noktasından 5 saat sonra, popülasyon p (5) = 250 * 2 ^ (5/8) ~ = 386 olacaktır.
Uzun yıllar boyunca öğleden sonra saat öğleden sonra saat 3.00’de bankanızda sırada bekleyen insan sayısını çalıştınız ve hatta 0, 1, 2, 3 veya 4 kişi için olasılık dağılımı yarattınız. Olasılıklar sırasıyla 0.1, 0.3, 0.4, 0.1 ve 0.1'dir. Cuma öğleden sonra en fazla 3 kişinin saat 15: 00'de sıraya girme olasılığı nedir?
Sırada en fazla 3 kişi olabilir. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.1 + 0.3 + 0.4 + 0.1 = 0.9 Böylece P (X <= 3) = 0.9 İlgilenmediğiniz bir değere sahip olduğunuz için iltifat kuralını kullanmaktan daha kolay olun, böylece toplam olasılıktan uzaklaştırabilirsiniz. as: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Böylece P (X <= 3) = 0,9
Uzun yıllar boyunca öğleden sonra saat öğleden sonra saat 3.00’de bankanızda sırada bekleyen insan sayısını çalıştınız ve hatta 0, 1, 2, 3 veya 4 kişi için olasılık dağılımı yarattınız. Olasılıklar sırasıyla 0.1, 0.3, 0.4, 0.1 ve 0.1'dir. En az 3 kişinin Cuma öğleden sonra saat 3.00’de sıraya girme olasılığı nedir?
Bu EITHER ... VEYA durumudur. Olasılıkları ekleyebilirsiniz. Koşullar münhasırdır, yani: bir sırada 3 VE 4 kişi olamaz. Sırada EITHER 3, VEYA 4 kişi var. Öyleyse şunu ekleyiniz: P (3 veya 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Karşınızdaki olasılığı hesaplayarak cevabınızı kontrol ediniz (eğer test sırasında zamanınız varsa): P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ve bu ve cevabınız gerektiği gibi 1,0 ekleyin.