Cevap:
Açıklama:
Katı bir küre, merkez hızı = u olan kaba bir yatay yüzeyde (kinetik sürtünme katsayısı = mu) yuvarlanıyor. Belirli bir anda pürüzsüz dikey bir duvarla inelastik olarak çarpışır. İade katsayısı 1/2 mi?
(3u) / (7mug) Bunu çözmek için çaba harcayarak, başlangıçta saf haddelemenin sadece u = omegar (yani omega açısal hızdır) yüzünden gerçekleştiğini söyleyebiliriz. hız azalır, ancak çarpışma sırasında omega'da bir değişiklik olmadı, bu yüzden eğer yeni hız v ve açısal hız omega ise, o zaman sürtünme kuvveti ile uygulanan harici tork nedeniyle kaç kez sonra sürtünme kuvveti ile bulunacağını bulmamız gerekir. yani, v = omega'r Şimdi verildiğinde, dinlenme katsayıları 1/2'dir, böylece çarpışmadan sonra küre ters
Daha önce istirahatte olan bir nesne, (3pi) / 8'lik bir eğim ile bir rampadan 5 m aşağıya kayar ve sonra 12 m boyunca zeminde yatay olarak kayar. Rampa ve döşeme aynı malzemeden yapılmışsa, malzemenin kinetik sürtünme katsayısı nedir?
= 0.33 rampanın eğik yüksekliği l = 5m rampanın eğim açısı teta = 3pi / 8 Yatay zeminin uzunluğu s = 12m rampanın dikey yüksekliği h = l * sintheta Nesnenin kütlesi = m Şimdi enerjinin korunumu uygulanıyor PE = sürtünmeye karşı yapılan çalışma mgh = mumgcostheta xxl + mumg xxs => h = mucostheta xxl + mu xxs => mu = h / (lcostheta + s) = (lsintheta) / (lcostheta + s) = (5xxsin (3pi / 8) )) / (5cos (3pi / 8) + 12) = 4.62 / 13.9 = 0.33
5 kg kütleli bir nesne pi / 12 eğiminde bir rampa üzerindedir. Nesne 2 N kuvvetle rampadan yukarı itiliyorsa, nesnenin kalması için gereken minimum statik sürtünme katsayısı nedir?
Nesne üzerindeki toplam kuvveti göz önüne alalım: Eğimi yukarı 2N. mgsin (pi / 12) ~~ 12.68 N aşağı doğru. Dolayısıyla toplam kuvvet aşağıya doğru 10.68N'dir. Şimdi, sürtünme kuvveti, bu durumda ~ 47.33mu N'yi basitleştiren mumgcostheta olarak verilmektedir; bu nedenle, mu = 10.68 / 47.33 ~~ 0.23 Not, ekstra kuvvet, mu = tanttata olmamıştır.