Cevap:
Parabol denklemi:
Açıklama:
Parabolün Vertex Formunda Denklemi:
Bir parabolün tepe noktasına (4,7) sahip olduğunu ve aynı zamanda noktadan (-3,8) geçtiğini varsayalım. Parabolün tepe formundaki denklemi nedir?
Aslında, özelliklerinizi karşılayan iki parabol (tepe biçiminde) vardır: y = 1/49 (x- 4) ^ 2 + 7 ve x = -7 (y-7) ^ 2 + 4 İki köşe formu vardır: y = a (x- h) ^ 2 + k ve x = a (yk) ^ 2 + h ((h, k) tepe noktasıdır ve "a" nın değeri başka bir nokta kullanılarak bulunabilir. Formlardan birini dışlamak için hiçbir nedenimiz yoktur, bu yüzden verilen köşeyi ikisine de yerleştiririz: y = a (x- 4) ^ 2 + 7 ve x = a (y-7) ^ 2 + 4 Her iki değeri de çöz (-3,8) noktasını kullanarak: 8 = a_1 (-3-4) ^ 2 + 7 ve -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 ve - 7 = a_2 (1) ^ 2 a_1 = 1/49 ve
F (x) = 3x ^ 2-24x + 8 denklemi bir parabolü temsil eder. Parabolün tepe noktası nedir?
(4, -40) "" "standart formdaki bir parabol için tepe noktasının x koordinatı" x_ (renkli (kırmızı) "tepe") = - b / (2a) f (x) = 3x ^ 2- 24x + 8 "" "standart formunda" a = 3, b = -24, c = 8 rArrx_ (renkli (kırmızı) "vertex") = - (- 24) / 6 = 4 f (4) = 3 (4) ^ 2-24 (4) + 8 = 48-96 + 8 = -40 rArrcolor (macenta) "vertex" = (4, -40)
Yatay bir yüzeye dayanarak şekilde gösterildiği gibi iki özdeş merdiven düzenlenmiştir. Her bir merdivenin kütlesi M ve uzunluk L'dir. Bir tepe noktası (M) tepe noktasından (P) asılıdır. Sistem dengede ise, sürtünme yönünü ve büyüklüğünü buluyorsunuz?
Sürtünme diğer merdivene doğru yataydır. Büyüklüğü (M + m) / 2 tan alfa, alfa = bir merdiven ile PN arasındaki yatay yüzeye yükseklik arasındaki açıdır, PAN üçgeni, PA PA ve dikey PN yüksekliğine göre oluşturulan dik açılı bir üçgendir. yüzey. Dengedeki dikey kuvvetler, merdivenlerin ağırlıklarını ve apeks P'deki ağırlığı dengeleyen eşit reaksiyonlar R'dir. Yani, 2 R = 2 Mg + mg. R = (M + m / 2) g ... (1) Merdivenlerin kaymasını engelleyen eşit yatay sürtünme F ve F iç içedir ve birbirlerini dengelerler. R ve F&