Teğet çizginin denklemi şu şekildedir:
nerede
Bu teğet hattın eğimini bulmak
nerede
let
ortak faktörü basitleştirmek
Çünkü teğet çizgi noktadan geçiyor
Teğetlik noktasının feshi göz önüne alındığında
onun koordinatını bulalım
Teğetlik noktası koordinatlarına sahip olmak
değeri bulmak için tanjant çizgisinin denkleminde bilinen tüm değerleri değiştirelim
bu nedenle, teğet çizginin noktadaki denklemi
Çizginin teğet çizgisinin x = pi / 4'teki y = cos (2x) grafiğine denklemi nedir?
Y = -2x + pi / 2 Teğet çizginin x = pi / 4'teki y = cos (2x) eğrisindeki denklemini bulmak için, y türevini alarak başlayın (zincir kuralını kullanın). y '= - 2sin (2x) Şimdi, x için değerinizi y' ye girin: -2sin (2 * pi / 4) = - 2 Bu, x = pi / 4'teki teğet çizginin eğimidir. Teğet çizginin denklemini bulmak için, y için bir değere ihtiyacımız var. Sadece x değerinizi y için orijinal denkleme takın. y = cos (2 * pi / 4) y = 0 Şimdi teğet çizginin denklemini bulmak için nokta eğim formunu kullanın: y-y_0 = m (x-x_0) Burada y_0 = 0, m = -2 ve x_0 = pi / 4
X = 3'teki f (x) = sqrt (x ^ 2e ^ x) teğet çizgisinin denklemi nedir?
Y = 11.2x-20.2 Veya y = (5e ^ (3/2)) / 2x-2e ^ (3/2) y = e ^ (3/2) ((5x) / 2-2) Bizde: f (x) = (x ^ 2e ^ x) ^ (1/2) f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * d / dx [x ^ 2e ^ x] f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * (2xe ^ x + x ^ 2e ^ x) f' (x) = ((2xe ^ x + x ^ 2e ^ x) (x ^ 2e ^ x) ^ (- 1/2)) / 2 f '(x) = (2xe ^ x + x ^ 2e ^ x) / (2 (x ^ 2e ^ x) ^ (1 / 2)) = (2xe ^ x + x ^ 2e ^ x) / (2sqrt (x ^ 2e ^ x)) f '(3) = (2 (3) e ^ 3 + 3 ^ 2e ^ 3) / (2sqrt (3 ^ 2e ^ 3)) = (5e ^ (3/2)) / 2 ~~ 11.2 y = mx + cf (3) = sqrt (9e ^ 3) = 3e ^ (3/2) ~~ 13,4 13,4 = 11.2 (3) + cc = 13.4-11.2 (3) = - 20.2 y = 11.2x-20.2 Veya
Teta = pi / 4'teki r = tan ^ 2 (teta) - sin (teta-pi) teğet çizgisinin denklemi nedir?
R = (2 + sqrt2) / 2 r = tan ^ 2 pi (4 tetatat (teta - pi) r = tan ^ 2 (pi / 4) - sin (pi / 4-pi) r = 1 ^ - günah ((- - 3pi) / 4) r = 1-günah ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2