Bu integrali temel fonksiyonlar açısından ifade edemezsiniz.
Entegrasyon için neye ihtiyacınız olduğuna bağlı olarak, bir entegrasyon veya başka bir yöntem seçebilirsiniz.
Power serileri ile entegrasyon
Hatırlamak
ve bu demek oluyor ki
Şimdi bütünleşebilirsiniz:
Eksik Gamma Fonksiyonu ile Entegrasyon
İlk olarak, yerine
İşlev
ve bu iyi tanımlanmıştır çünkü fonksiyon
Yani buna sahipsin
Şunu
Yazabiliriz:
yani
Sonunda biz
(Ln (xe ^ x)) / x integrali nedir?
Int ln (xe ^ x) / (x) dx = ln ^ 2 (x) / 2 + x + C Bize verildi: int ln (xe ^ x) / (x) dx ln (ab) = ln kullanmak (a) + ln (b): = int (ln (x) + ln (e ^ x)) / (x) dx ln (a ^ b) = bln (a) kullanarak: = int (ln (x ) + xln (e)) / (x) dx ln (e) = 1: = int (ln (x) + x) / (x) dx kullanma dx Kesiri bölme (x / x = 1): = int (ln (x) / x + 1) dx Toplanan integralleri ayırma: = int ln (x) / xdx + int dx İkinci integral basitçe x + C'dir, burada C isteğe bağlı bir sabittir. İlk integral, u-ikameini kullanalım: u equiv ln (x), dolayısıyla du = 1 / x dx kullanalım. U-ikame kullanma: = int udu + x + C Bütünleştirme (
İnt ((x ^ 2-1) / sqrt (2x-1)) dx integrali nedir?
Int (x ^ 2-1) / sqrt (2x-1) dx = 1/20 (2x-1) ^ (5/2) +1/6 (2x-1) ^ (3/2) -3 / 4sqrt (2x-1) + C Bu integraldeki büyük sorunumuz kök, bu yüzden ondan kurtulmak istiyoruz. Bunu, u = sqrt (2x-1) yerine geçerek girebiliriz. Bu durumda türev (du) / dx = 1 / sqrt (2x-1) olur. Böylece, şunu hatırlıyoruz: Bir tersine bölünmenin, sadece payda ile çarpmakla aynı olduğunu) u: int ( x ^ 2-1) / sqrt (2x-1) dx = int (x ^ 2-1) / iptal (sqrt (2x-1)) iptal et (sqrt (2x-1)) du = int x ^ 2-1 du Şimdi tek yapmamız gereken x ^ 2'yi u cinsinden ifade etmektir (x'i u ile bütünleş
Bir çizgi integrali nedir?
Bir çizgi integralini düşünmenin en basit yolu, eğrinin bir fonksiyonla tanımlandığı, genellikle 3 boyutlu uzayda (genellikle iki sınır noktası arasında) bir eğrinin altındaki alandır. f (x, y)