Cevap:
Ardışık üç tam sayı sayısının toplamı orta değerin 3 katıdır: Ortalama sayı n olduğu için 3n'dir.
Açıklama:
Herhangi bir tamsayı numarası n olsun
Sonra 1 sayısı n-1'den daha az
Ayrıca 1 sayısı n + 1'den daha fazla
Yani toplam
Bunları eklemek
Yani son toplam
Not: Ortalama değer
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Ardışık üç tamsayının toplamı 216'dır. Üç tamsayının en büyüğü nedir?
En büyük sayı 73'tür. İlk tamsayı n olsun. Sonra n + (n + 1) + (n + 2) = 216 => 3n + 3 = 216 Her iki taraftan 3 al, 3n = 213 Her iki tarafı da 3 n = 71 böle en büyük sayıdır -> n + 2 = 71 + 2 = 73
Küçük iki tamsayının ürünü, en büyük tamsayının 5 katından 5 kat daha azsa, ardışık 3 pozitif tamsayının en küçüğü nedir?
En küçük sayı x, ikinci ve üçüncü ise x + 1 ve x + 2 olsun. (X) (x + 1) = (5 (x + 2)) - 5 x ^ 2 + x = 5x + 10 - 5 x ^ 2 - 4x - 5 = 0 (x - 5) (x + 1) = 0 x = 5 ve-1 Sayıların pozitif olması gerektiğinden, en küçük sayı 5'tir.