Cevap:
Sahip olabileceğimiz farklı alanlar
Açıklama:
Çevre olarak
Her bir tarafın inç ölçüsü doğal bir sayı olduğundan,
ve dolayısıyla farklı alanlarda dikdörtgen olabilir
Bir dikdörtgenin alanı 100 inç karedir. Dikdörtgenin çevresi 40 inçtir. İkinci bir dikdörtgen aynı alana ancak farklı bir çevreye sahiptir. İkinci dikdörtgen bir kare mi?
Hayır. İkinci dikdörtgen kare değil. İkinci dikdörtgenin kare olmama nedeni, ilk dikdörtgenin kare olmasıdır. Örneğin, ilk dikdörtgen (a.k.a. karesi) 100 santimetrekarelik bir çevreye ve 40 santimetrelik bir çevreye sahipse, bir tarafın değeri 10 olmalıdır. Bu söylenirse, yukarıdaki ifadeyi doğrulayalım. İlk dikdörtgen gerçekten bir kare * ise, o zaman bütün tarafların eşit olması gerekir. Dahası, bu, bir tarafının 10 olması durumunda, diğer tarafların hepsinin de 10 olması gerektiği için mantıklı olacaktır. Böylece bu, bu kareye 40 inçlik bir ç
Bir üçgenin çevresi 29 mm'dir. İlk tarafın uzunluğu, ikinci tarafın uzunluğunun iki katıdır. Üçüncü tarafın uzunluğu, ikinci tarafın uzunluğundan 5 daha fazladır. Üçgenin yan uzunluklarını nasıl buluyorsunuz?
S_1 = 12 s_2 = 6 s_3 = 11 Bir üçgenin çevresi, tüm kenarlarının uzunluklarının toplamıdır. Bu durumda, çevre 29mm olduğu verilir. Öyleyse bu durum için: s_1 + s_2 + s_3 = 29 Dolayısıyla, tarafların uzunluğunu çözerken, verilen ifadeleri denklem formuna çeviririz. "1. tarafın uzunluğu 2. tarafın iki katıdır" Bunu çözmek için s_1 veya s_2'ye rastgele bir değişken atarız. Bu örnekte, denklemimde kesirleri önlemek için x'in 2. tarafın uzunluğu olmasına izin verirdim. öyleyse şunu biliyoruz: s_1 = 2s_2 ama s_2'nin x olması
Bir dikdörtgenin alanı A = l (w) formülüyle verilmişse ve bir dikdörtgenin 132 santimetrekarelik bir alanı ve 11 santimetre uzunluğunda olması durumunda dikdörtgenin çevresi nedir?
A = lw = 132, l = 11, => 11w = 132, 11 'e bölerek, => w = 132/11 = 12 Dolayısıyla, P çevre P = 2 (l + w) = 2 (11) ile bulunabilir. +12) = 46 cm Umarım bu yardımcı olur.