F (x) = sqrt (a ^ 2 + x ^ 2) türevini nasıl buluyorsunuz?

F (x) = sqrt (a ^ 2 + x ^ 2) türevini nasıl buluyorsunuz?
Anonim

Cevap:

#f '(x) = x / (sqrt (a ^ 2 + x ^ 2)) #

Açıklama:

Zincir kuralı şöyle devam eder:

Eğer #f (x) = (g (x)) ^ n #, sonra #f '(x) = n (g (x)) ^ (n-1) x d / DXG (x) #

Bu kuralı uygulamak:

#f (x) = sqrt (a ^ 2 + x ^ 2) = (a ^ 2 + x ^ 2) ^ (1/2) #

#f '(x) = 1/2 (a ^ 2 + x ^ 2) ^ (1 / 2-1) * d / dx (a ^ 2 + x ^ 2) #

#f '(x) = 1/2 (a ^ 2 + x ^ 2) ^ (- 1/2) * 2x #

#f '(x) = 1 / (2 (a ^ 2 + x ^ 2) ^ (1/2)) * 2x #

#f '(x) = x / ((a ^ 2 + x ^ 2) ^ (1/2)) #

#f '(x) = x / (sqrt (a ^ 2 + x ^ 2)) #