Cevap:
sinüs kuralı kullan
Açıklama:
bu açıklamayı daha kolay anlamak için bir kağıt parçası ve bir kalem bulmanızı öneririm.
Kalan açının değerini bulmak:
onlara isimler verelim
en küçük açı üçgenin en kısa tarafına bakacak,
yani B (en küçük açı) en kısa kenara bakar,
ve diğer iki taraf daha uzun
bu da demek oluyor ki AC en kısa taraf
Böylece diğer iki taraf en uzun boyuna sahip olabilir.
Diyelim ki AC 5 (verdiğiniz uzunluk)
sinüs kuralı kullanarak
Bir açının sinüsünün ve açının bakan tarafının oranı aynıdır:
bilinen:
Bununla en kısa 5 olduğunda diğer iki tarafın uzunluğunu bulabilirsiniz.
Gerisini sizin için bırakacağım, devam et.
Üçgenin iki köşesinde (2 pi) / 3 ve (pi) / 4 açıları vardır. Üçgenin bir tarafının uzunluğu 19 ise, üçgenin mümkün olan en uzun çevresi nedir?
Mümkün olan en uzun çevre rengi (yeşil) (P = 19 + 51.909 + 63.5752 = 134.4842) Üç açı (^), 3, pi / 4, pi / 12, üç açı pi ^ c'ye kadar eklenir. taraf 19, en küçük açıya karşılık gelmelidir pi / 12 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4) ) / günah (pi / 12) = 51.909 c = (19 * günah ((2pi) / 3)) / günah (pi / 12) = 63.5752 Mümkün olan en uzun çevre rengi (yeşil) (P = 19 + 51,909 + 63,5752 = 134,4842) )
Üçgenin iki köşesinde (2 pi) / 3 ve (pi) / 4 açıları vardır. Üçgenin bir tarafının uzunluğu 8 ise, üçgenin mümkün olan en uzun çevresi nedir?
Mümkün olan en uzun üçgen çevresi 56.63 birimdir. A ve B tarafları arasındaki açı / _c = (2pi) / 3 = 120 ^ 0 B ve C tarafları arasındaki açı / _a = pi / 4 = 45 ^ 0:. C ve A tarafları arasındaki açı / _b = 180- (120 + 45) = 15 ^ 0 En küçük açının tersine, 8'in en uzun kenarı en küçük, en küçük olmalıdır. B = 8 Sinüs kuralı, A, B ve C'nin kenarların uzunlukları ve karşıt açıların bir üçgende a, b ve c olup olmadığını belirtir, sonra: A / sina = B / sinb = C / sinc; B = 8: B / sinb = C / sinc veya 8 / sin15 =
Üçgenin iki köşesinde (2 pi) / 3 ve (pi) / 4 açıları vardır. Üçgenin bir tarafının uzunluğu 15 ise, üçgenin mümkün olan en uzun çevresi nedir?
P = 106.17 Gözlemle, en uzun uzunluk en geniş açının karşısında ve en küçük açının karşısında en kısa uzunluk olacaktır. Belirtilen ikisine verilen en küçük açı 1/12 (pi) veya 15 ^ 'dır. En kısa kenar olarak 15 uzunluğunu kullanarak, her bir tarafındaki açılar verilenlerdir. H yüksekliğini h değerlerini bu değerlerden hesaplayabiliriz ve bunu orijinal üçgenin diğer iki tarafını bulmak için iki üçgen parçanın tarafı olarak kullanabiliriz. tan (2 / 3pi) = s / (15-x); tan (1 / 4pi) = s / x -1.732 = s / (15-x); 1 = h / x -1.732 xx (15