32 ^ (2/3) 'ün karekökü nedir?

32 ^ (2/3) 'ün karekökü nedir?
Anonim

Cevap:

# 2root3 (4) #

Açıklama:

#sqrt (32) ^ (2/3) #

#=(32)^(2/3)^(1/2)#

#=(32)^(2/3*1/2)#

#=(32)^(1/3)#

#=(2^5)^(1/3)#

# = Root3 (2 ^ 5) #

# = root3 (2 ^ 3 * 2 ^ 2) #

# = 2root3 (4) #

Cevap:

# 2xx2 ^ (2/3) #

Açıklama:

#sqrt (32 ^ (2/3)) sqrt ((2 ^ 5) ^ (2/3) # =

#sqrt ((2 ^ 5) ^ (2/3)) sqrt (2 ^ (10/3) # =

#sqrt (2 ^ (10/3)) = (2 ^ (10/3)) ^ (1/2) #

#(2^(10/3))^(1/2)=2^(10/6)#

#2^(10/6)=2^(5/3)#

2. ^ (5/3) = 2 ^ (1 + 2/3) = 2xx2 ^ (2/3) #

Umarım bu yardımcı olur:)