Cevap:
Açıklama:
#sqrt (21) ~~ 4.58257569495584000658 #
Yinelenen sürekli bir kesir olarak ifade edilir:
#sqrt (21) = 4; bar (1,1,2,1,1,8) = 4 + 1 / (1 + 1 / (1 + 1 / (2 + …))) #
Bunun nasıl hesaplanacağını görmek için bkz. Http://socratic.org/questions/given-an-integer-n-is-there-an-efficient-way-to-find-integers-pq-such-that-abs-# 176764
İçin iyi bir yaklaşım bulabiliriz
#sqrt (21) ~~ 4; 1,1,2,1,1 = 4 + 1 / (1 + 1 / (1 + 1 / (2 + 1 / (1 + 1/1)))) = 55/12 = 4.58 nokta (3) #
Bu iyi bir yaklaşım çünkü
[5 (5'in karekökü) + 3 (7'nin karekökü)] / [4 (7'nin karekökü) - 3 (5'in karekökü)] nedir?
(159 + 29sqrt (35)) / 47 renk (beyaz) ("XXXXXXXX") herhangi bir aritmetik hata yapmadığımı varsayarak (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Eşleniği çarparak paydayı rasyonelleştirin: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) + 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29srt (35)) / 47
7 ^ 7 + karekökü 7 ^ 2 + karekökü 7 ^ 3 + karekökü 7 ^ 4 + karekökü 7 ^ 5 nedir?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Yapabileceğimiz ilk şey, güçleri olanların köklerini iptal etmektir. O zamandan beri: herhangi bir sayı için sqrt (x ^ 2) = x ve sqrt (x ^ 4) = x ^ 2, sadece sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt diyebiliriz. (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Şimdi, 7 ^ 3, 7 ^ 2 * 7 olarak yeniden yazılabilir, ve bu 7 ^ 2 kökünden kurtulabilir! Aynısı 7 ^ 5 için de geçerlidir ancak 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt olarak yeniden yazıl
Neden (3'ün karekökünün 5 katı) artı 27'nin karekökü 3'ün karekökünün 8 katıdır?
Açıklamaya bakınız. Unutmayın: sqrt (27) = sqrt (3 ^ 3) = 3sqrt (3) Daha sonra sahip olduk: 5sqrt (3) + sqrt (27) = 5sqrt (3) + 3sqrt (3) = 8sqrt (3)