Cevap:
Deliği
Açıklama:
Öncelikle, bu durumda olan paydanın sıfır işaretlerini hesaplamanız gerekir.
Gördüğünüz gibi ortak bir sıfır işareti var. Bu bir asimptot değil, bir delik olduğu anlamına gelir
Şimdi biz alıyoruz
çünkü yalnızca bir çeşit üstel var
Şimdi, üs, payda paydadan daha büyükse, bu, köşegen veya kavisli bir asimptot olduğu anlamına gelir. Aksi takdirde, düz bir çizgi var. Bu durumda, düz bir çizgi olacak. Şimdi payın değerlerini paydanın değerine bölersiniz.
Varsa, f (x) = (1 + 1 / x) / (1 / x) 'deki asimptot (lar) ve delik (ler) nedir?
X = 0 olan bir deliktir. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Bu, gradyan 1 ve y-kesişme 1 içeren doğrusal bir işlevdir. x = 0 dışında her x için tanımlanır, çünkü bölme 0 tanımsız.
Varsa, f (x) = (1-e ^ -x) / x'deki asimptot (lar) ve delik (ler) nedir?
Tek asimptot x = 0'dır. Elbette, x 0 olamaz, aksi takdirde f (x) tanımsız kalır. Ve işte grafikteki 'delik'.
Varsa, f (x) = (1-x) ^ 2 / (x ^ 2-1) 'deki asimptot (lar) ve delik (ler) nedir?
F (x), yatay bir asimptote y = 1, dikey bir asimptote x = -1 ve x = 1'de bir deliğe sahiptir. > f (x) = (1-x) ^ 2 / (x ^ 2-1) = (x-1) ^ 2 / ((x-1) (x + 1)) = (x-1) / ( x + 1) = (x + 1-2) / (x + 1) = 1-2 / (x + 1) hariç tutularak x! = 1 olarak x -> + - oo terimi 2 / (x + 1) -> 0, yani f (x) yatay asimptote y = 1 olur. X = -1 olduğunda, f (x) 'in paydası sıfırdır, ancak pay sıfır değildir. Yani f (x), dikey bir asimptote sahip x = -1. X = 1 olduğunda, hem f (x) hem paydası hem de payda sıfırdır, yani f (x) tanımsızdır ve x = 1'de bir deliğe sahiptir. Lim_ (x-> 1) f (x) = 0 tanımlanmış olduğuna di